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scattering effects 
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versidad Authoma, E28049 Madrid, Spain 

Received 30 December 1591 

Abstract The electronic transport properties of a linear chain have k e n  analysed. 
m e  chain conductance, the electrochemical potential variations along the chain, and 
a m e  defect scattering effects have been discussed using the non-equilibrium Keldysh 
formalism. For the elastic regime we show that there is a deep link between the chain 
mnductance and the elemchemical potential drop along the chain. For the inelastic 
regime we discuss how the quantum interference associated with the electronic transpon 
is damped by the inelastic scattering. 

1. Introduction 

The transport properties of mesoscopic systems are receiving an increasing amount 
of attention both experimentally and theoretically (Landauer 1989, Biittiker 1988, 
Stone and Szafer 1988). These systems are related to dilferent branches of physics 
like superlattices, heterostructures (Esaki and B u  1970), and the scanning tunnelling 
microscope (Binning et d 1982). 

Although a great effort has been addressed to the understanding of their elastic 
conductance only a little work has been done on the effect of inelastic processes (Sols 
1992). Biittiker (1989) has proposed a generalization of Landauer’s approach to the 
conductance by including inelastic scattering modelled by electron reservoirs coupled 
to the wire; this approach has been used by other workers (D’Amato and Pastawsky 
199oa, b) to obtain the general properties of the inelastic effects. Other workers have 
followed a more basic method that is capable of calculating the transport properties 
of mesoscopic systems from a fundamental point of view (Datta 1990, Anda and 
Flores 1991). 

Even for the case of elastic conductance one. and two-dimensional systems are 
studied under restricted conditions by assuming a given external potential along the 
structure; self-consistency between this potential and the induced electronic charge 
is not usually introduced for obvious reasons: the long computer time one would 
have to spend on the calculations. In some cases this self-consistency is, however, 
an essential point; this is the case for a large bias or if we are interested in the 
electrochemical potential variations along the mesoscopic system (Pernas et af 1990, 
Pernas and Flores 1991). 

In this paper we shall analyse the conductance properties of a one-dimensional 
chain joining two reservoirs, for elastic and inelastic transport regimes. As regards 
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the elastic regime we shall analyse it by introducing a full consistency between the 
potential acting on the electrons and tbe charge induced along the chain: the chain 
conductance, the electrochemical potential variation along the chain and the effect of 
local defects will be discussed. The inelastic regime will be analysed in the limit of a 
very small external bias; our specific calculations will show how quantum mechanical 
fluctuations in the differential conductance disappear with the inelastic scattering. 

In our approach to the previous problems we shaU follow the thermodynamical 
non-equilibrium formalism derived by Keldysh (1964), and developed later by Caroli 
er a1 (1971). This method affords a fundamental approach to the transporr prob- 
lems (Rammer and Smith 1986). Some people have applied these techniques to the 
analysis of mesoscopic systems (McLennan er ul 1991); in general its advantage is 
that its implementation requires the calculation of only one-particle Green functions, 
providing all the tools to obtain in a self-consistent way the potential profile cre- 
ated by the external bias. Moreover, the method allows an appropriate description of 
many-particle effects that can be calculated in principle by introducing the appropriate 
self-energies, as in causal many-body techniques. 

The paper is organized as follows: in section 2 we present our model and the 
general Keldysh formalism used to solve it. In section 3 we present our results 
for the elastic system, in section 4 we discuss the inelastic effects in the differential 
conductance, and section 5 is devoted to conclusions and tinal remarks. 

P L Pemas et ul 

2. Model and general formalism 

Figure 1 shows the model to analyse: a linear chain with n sites is intercalated 
between two Bethe lattices that play the role of two reservoirs pernas et ul 1990) 
having chemical potentials pL and pR (notice that these chemical potentials are 
only well defined at -CO and CO, respectively). The aim of the following analysis is to 
obtain the conductance properties of the chain for an applied bias, V = pR-pL. We 
describe the elastic properties of the system by means of the following Hamiltonian: 

+ to , l (d , ,El ,o  + z! ,oEo,d)  + tn,,+l(En,&nti,o t *  + L , u L A  (1) 
where Ei represents the diagonal level of the single orbital of each chain site, which 
could depend upon site i for an applied bias, t i , j  the hopping parameter between 
nearest neighbours in the chain, to,l and t,,,+l the hopping parameters linking 
the linear chain to the Bethe lattices, and kBethe the Hamiltonian of each z-fold 
coordinated Bethe lattice: 

n 

Figure 1. A linear chain wilh naites h joins MO 
1 n Bethe latlice Rsewoim. 
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In general we shall take all the hopping parameters, t i , j ,  to,l and t,,,tl equal 
to t o  except for the central hopping parameter t' shown in figure 1. Defects in the 
chain will be modelled by taking t' # t. 

Inelastic effects are modelled by on-site electron-electron or electron-phonon 
interactions, and are assumed to be operative only inside the linear chain. For the 
electron-electron case we take the following Hamiltonian: 

n 

H- = uhi,,hi,L 
i=1 

while for the electron-phonon case we write 
R 

HWh = g1'2w0 Ai, ,(Q + Li) (3) 
o;i=1 

where bl and 8; are the creation and annihilation operators associated with the 
optical phonon of a constant frequency uo localized at the site i, g measuring the 
electron-phonon coupling. 

The chain conductance properties are obtained for a given bias V by using the 
Keldysh (1964) method that will be summarized below. In this approach the usual 
retarded and advanced Green functions, GR and GA respectively, are introduced 
as well as the nonequilibrium ones, G+- and G-+, defined (Keldysh 1964) by the 
equations: 

G+:(w)  bJ = -i(E.t!) : J  G t : ( w )  = i(i.jtj) (4) 

where ( ) represents mean values taken on the non-equilibrium state of the system; 
for simplicity we eliminate &om now on the spin quantum number U. 

These Green functions are straightfowardly related to the non-equilibrium occu- 
pation of the density of states, while GR and GA only yield the total density of states, 
irrespective of their occupation. The density of states and the occupation spectra, as 
well as the density currents, are obtained from GR, GA, Gt-  and G-+. In particu- 
lar, we should mention that the total current intensity along the linear chain is given 
by the following (Caroli a al 1971) equation: 

Equation (5) yields the total current crossing the interhce between atoms 0 and 1 
as shown in figure 1; obviously, other chain atoms, say i and i + 1 , might have been 
used to calculate I, but for our purposes this turns out to be the most convenient 
choice. 

It is worth mentioning that equation (5) can be witten in a more convenient way 
as follows (Caroli er al 1971): 

where the Green functions, G(w),  have been introduced by taking in our initial 
Hamiltonian to,l = t,,R+l = 0. In this particular case there is no current intensity 
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along the Linear chain and the different Green function components, g t j ,  can be 
obtained by means of the normal techniques used for equilibrium systems. Thus: 

g $ ( w )  = 2 W s Y w ) I D  - f (w)I  

where f ( w )  is the Fermi distribution function. In this paper, we have assumed the 
temperature to be absolute zero. 

In order to calculate Gt-, G-+, GR and GA we have used the following Dyson 
matricial equations: 

P L Pemas et a1 

s&w) = -21m[sR(w)1f(w) 

0 
et- = ( i + G R g R ) ~ a ) t - ( i + ~ A G . A ) + e R k t - G A  (8) 

G R  = &(OP + GRkR&O)R 

where G [ O )  are the undressed Green functions for 2 = 0. In our approach the self- 
energies, eR,  kA, gt- and e-+ only include the many-body effects associated with 
the electron-electron and the electron-phonon interactions defined by the Hamilto- 
nians (3a) and (3b); we assume these self-energies to be known, although we discuss 
this point further below. The Green functions &a) are consequently the solutions of 
the one-electron Hamiltonian (l), for the applied bias V = p R  - pL; they have been 
calculated using the following Dyson equations: 

(9) 

(10) 

&:(O)R = 3 R  + &O)RfGR 

&(a)+- = ( j  + &:CO)Rri.)jrCo)+-(f + P G A )  

where is taken to be the hopping elements between sites 0 and 1, and sites n and 
n + 1. In other words, ? = 0 represents the case with the linear chain uncoupled 
to the Bethe lattices. (Notice that for this one-electron case p+- = 0; thus, the 
equivalent of the last term of equation (8) does not appear in equation (lo).) 

Equations (9) and (10) are the fundamental equations we are going to use in 
order to analyse the elastic conductance of the chain. In  this limit, the many-body 
effects, measured by the ?.elf-energies 2 in equations (7) and (8) have been neglected. 
Our elastic limit is not, however, completely determined without a prescription for 
calculating the potentials induced in the chain and the Bethe lattice sites (Ei and E, 
in equations (1) and (2)). We have chosen to relate these potentials to the induced 
charges at each site, 6nj, by means of the linear equations: 

and 

where 6Vi represents the electrostatic potential induced by the charges, 6ni. Here, 
6n.i is the induced charge at the site i measured with respect to the case of zero 
bias. In writing equation (llb), we have assumed that all the site levels, Ei and E j ,  
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are equal to E(o) for zero bias. We should also comment that nj is given by the 
following equation 

The coefficients are determined by the particular chain geometry. For the 
sake of simplicity the coefficients a i j  are defined by assuming that there are many 
linear chains in parallel: then, a site charge is assumed to represent a planar charge 
extending uniformly in the direction perpendicular to the chain (the planar charge 
is defined by the surface area per atom, S, we have taken S = 15 A’; and d, the 
distance between nearest neighbours, 4 A). We should comment that this assumption 
implies large valws for the coefficients ai, j ;  then, self-consistency between Sy and 
6nj yields small values of the induced charges, otherwise 615 would be too large. 
Our assumptions for obtaining the coefficients q j  are not far from local charge 
neutrality conditions. 

The case of inelastic transport is analysed by also considering equations (7) and 
(8). Fbr this more general case, it is convenient to split Gt- (equation (8)) into the 
elastic and inelastic contributions (Caroli et al 1971): 

G2- = (i+ &R$+)&O)+-(i+ k A & A )  (13a) 

(1%) &+- = &:R$t-&A. 
me1 

Then, the total current can also be split into its elastic and inelastic parts (Caroli 
et al 1971): I = I,, + I,,,, where 

In equation (14) fo(w) and f,+,(w) are the Fermi distribution functions for the 
two reservoirs, and po(w) and P,,+~(W) the local density of states for sites 0 and 
n+ 1 for the two Bethe lattices, respectively, when they are decoupled from the chain. 
In obtaining equation (15) we have made a further assumption: we have taken only 
diagonal self-energy components; in other words, we approximate 9 by its diagonal 
components E;,; and neglect off-diagonal terms, C i , j ,  if i # j .  Needless to say that 
only equation (14) should he used for the elastic transport case, with G replaced by 

The elastic electrical current given by equation (14) depends on the properties of 
the sites 0 and n f 1 for equilibrium conditions, and on the Gt? Green function 
which describes how electrons propagate along the chain between sites 1 and n. We 
should mention that Gt,, depends on the retarded self-energies, Etj;  in this case, 
these self-energies p!ay the role of an optical potential acting locally on the electron. 
The inelastic intensity given by equation (13) is, however, directly proportional to 
the self-energies E$,[ and E;:, which yield the way in which the inelastic scattering 
inside the linear cham induces an inelastic current from site 0 to site 1. It should 

GW. 
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be kept in mind, however, that although the total current is independent of the sites 
used to calculate it (in our case 0 H I), the splitting into the elastic and ineIastic 
currents is not. This is related m the inelastic scattering an electron suffers as it goes 
along the chain changing its contribution from an elastic to an inelastic current. 

Equations (14) and (15) will be used below to calculate the effect of the inelastic 
scattering on the linear chain conductance. Let us mention now that in obtain- 
ing equations (14) and (U), the selfenergies Et;, Etil E:,: and E;' have been 
assumed to be known. A hlly consistent solution to the h e a r  chain inelastic conduc- 
tance a n  only be obtained by a detailed calculation of the different selfenergies; in 
this paper, instead of doing this calculation, we shall follow a different approach and 
study the inelastic scattering effects by means of an effective parameter, the quasipar- 
ticle lifetime, that yields the main effects associated with the different self-energies. 
We shall discuss this p i n t  in section 4. 

P L &mas et a1 

3. mastic conductance 

First of all we consider the electrochemical potential variations along different linear 
chains, changing its length, the mean Fermi energy and the applied bias. 
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2 The eleclmhemical polenlial -rialions 

dong the linear chain and lhe two reselvoin, for: 
(0 )  n = 36, PL = -1.005 and PR = -0.995 
(chain sites 742). (b) n = 38, P L  = -1.005 and 
p~ = -0.995 (chain sites 7-44). (c) n = 38, 
#I = -0.505 and p~ = -0.495 (chain sites 7- 
44). ?he Bethe lallices extend six sila f" each 
end ot the linear hain. 

Figurt 3. As figure 2 lor: (U) n = 6, p~ = -0.25 
and PR = 0.25 (chain siles 7-12); (b) n = 5 ,  
PL = -0.25 and P R  = 0.25 (chain sites 7-11). 
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Egures 2 and 3 show the electrochemical potential variations along the chain for 

(a) n = 3 6 , E ; = O , t = t ’ =  l , p L = - l . 0 0 5 a n d  pR=-0.995 
(b)  n = 38,Ei = 0 , t  = 1‘ = l , p L  = -1.005 and pR = -0.995 
( c )  n = 3 8 , E j  = 0 , t  = t’ = l ,pL = -0.505 and pR = -0.495 
(d)  n = 6 , E ;  = 0, t  = t’ = l , p L  = -0.250 and pR = 0.250 
(e) n = 5, E; = 0, t = t’ = 1, pL = -0.250 and pR = 0.250. 

In all these cases, the applied bias pR - p L  is small enough to give a linear 
response of the system. Cases (d) and (e) (figure 3) have been taken from Pernas 
ef a1 (1990), where the local charge neutrality conditions were used to calculate the 
electrochemical potential along the chain. It is interesting to see how the potential 
variations along the chain depend on its length and the mean Fermi energy. First 
of all it is important to notice that in all the cases studied the applied voltage falls 
mainly around Bethe lattice mntacts of the chain, oscillating around a constant value 
in the chain. For n = 36 and $(pR + pL) = -1 we find the oscillations in the 
electrochemical potential shown in figure 2(a); these oscillations correspond to the 
Fermi wavelength appearing at Er = -1 (for this energy, the Fermi wavelength 
extends three atoms along the linear chain). The main reason for the appearance of 
these oscillations is the constructive interference between the chain length ( n  = 36)  
and the Fermi wavelength (three atoms). We have checked this point by changing n 
from 36 to 38, keeping pR and pL mnstant. Figure 2(b) shows the electrochemical 
potential variations along the chain: because of the lack of constructive interference 
between the chain length and the Fermi wavelength (n = 38 is not a multiple of this 
length), we find that the potential is constant along the chain. In a further step, we 
have changed i p R  + p L  from -1 to -0.5, keeping n = 36; for this case, we find the 
solution shown in figure 2(c), with local fluctuations having no regular pattern. For 
this case, the chain length is not a multiple of the Fermi wavelength, which is 238 
atoms; the electrochemical potential shown in figure 2(c) presents, however, small 
irregularities in its periodicity, which changes between wavelengths of hvo and three 
atoms. 

The results of figure 2 show the great importance of having the right interference 
between the chain length and the Fermi wavelength, in order to obtain periodic 
oscillations in the electrochemical potential profile along the chain. Similar results 
were obtained in Pernas el a/ (1990) for shorter chains; for the sake of completeness 
we reproduce here, in figure 3, the results calculated by Fernas et a1 (1990) for the 
chains of length n = 6 and 5. For the case n = 6 and $pR,+fiL = 0 the chain length 
is a multiple of the Fermi wavelength (two atoms) and the elecuochemical potential 
shows the oscillations of figure 3(a). For the case n = 5 and 4pR + p L  = 0, the 
chain length and the Fermi wavelength do not interfere constructively, yielding the 
constant potential shown in figure 3(b). Previous results have been obtained for a 
small bias, within a linear-response regime. In order to explore the effect of larger 
biases, we have analysed the case n = 30, with 4pR+ pL = -1 and different values 
of pR - pL = 0.1, a2 ,  0.3, 0.4,. . ., 0.9 and 1. Figure 4 shows the results we have 
obtained for the electrochemical potential along the chain. It is worth realizing that 
for pR - pL = 0.1 and 0.2, we are close to the linear response regime. Morover, 
for this case n = 30 is a multiple of the Fermi wavelength, and the potential shows 
the periodicity associated with this length (three atoms). For pR - pL > 0.3 we 
find a non-linear regime with the potential profile changing with respect to the linear 

the following cases 
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case. These changes are more important for larger applied biases and, eventually, 
for pR - pL 0.5, the regular periodicity of the potential profile is lost: this is 
obviously because the wavelength of the new electrons contributes to the elastic 
current. Increasing the bias we find new electrons with different wavelengths; this 
effect destroys the coherence between the chain length and the wavelength of the 
elecmns contributing to the current. 

P L Pemas el RI 
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Figure 4 Eleclmchemical potential variations along 
the h e a r  chain Cor n = 30. ; ( p ~  + p ~ )  = -1  
and diaerent values of p R  - p~ (0.1,0.~0.3, .... 0.9 
and 1.0) (chain sites 7-36). 

Flgum 5. Condudancc of a linear chain in uniu 
of 2e21h as a function of t ' l t  for: (a) n = 38, 
! j ( p ~  + P L )  = -1; (b) n = 36, ~ ( P R  + PL) = 
-1; (c)  n = 38, ) ( P ~ + P L )  = -0.5; (d )  n = 5, 
) ( P R  + P L )  = 0; (4 n = 6 ,  $ ( P R  + P L )  = 0. 

Let us turn our attention to analysing the conductance of the linear chain. We 
shall present our results by considering the case t' # t; this implies assuming to have 
a defect at the centre of the linear chain, (see figure 1). Fust of all, we are going to 
analyse the conductance, G, of differents chains for a small applied bias (pR - pL is 
assumed to be wry small) as a function of t ' / t .  Egure 5, shows G = I / ( p R  - pL) 
as a function of t ' / t  for the following cases: (a), R = 38, $pR + pL = -1; @), n = 
3 6 , & p ~ + p ~ = - 1 ;  (C). n = 3 8 , ; p R + p L =  -0.5; (d), n = 5 , 4 p R + p ~ = 0 ;  
(e), n = 6 and, $pR f p,, = 0,  in correspondence with the cases discussed above. 
The results of figure 5 show a maximum, 2 e z / h ,  for the conductance in all the 
cases: this is obviously the maximum value a onedimensional chain can have. This 
maximum appears, however, for the  different cases at different values of t'/t. What 
is of interest to realize is that this maximum appears for t'/t = 1 for cases (a) and 
(d) only; it should be remembered that in these particular cases the electrochemical 
potential is constant along the chain. In the other cases the conductance maximum 
appears for values of t ' / t  close to 0.58 or 1.71. These results show that the potential 
oscillates along the chain if the conductance is smaller than 2 e z / h .  

We also explored the elastic conductance of the chain as a function of the Fermi 
level, for t ' / i  = 1. Using the Keldysh method discussed above, we have obtained the 
following analytical value: 

(I&) G =  (2ez/h)4c2sin2 asin '  a'/(4czsin2 a sin' a'+ A') 
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where 

A = sin[(n + l ) a ]  t c*sin[(n - 1)a ]  + 2ccos a' sin na (166) 

and 

cos a' = - ( c E , / 2 t )  cos a = - ( E , / 2 t )  c =  l/(z-l)l 'Z.  (1k)  

Here E, is the Rrmi level referred to the centre of the band and z is the 
coordination number of the Bethe lattice (taken to be four in this paper). Equation 
(160) shows that the maximum of G, 2e2/h ,  appears for A = 0; this condition 
expresses the lack of interference between the Fermi wavelength and the chain length, 
as discussed above. Figure 6 shows this linear conductance for n = 36 and 38; notice 
the oscillations appearing in the conductance, and that G has a maximum for n = 38 
and E, = -1, while a minimum appears close to the other cases discussed above 
(n = 38, Ei = -0.5; n = 36, Ef = 0; n = 36, E, = -1). In general, a maximum in 
the conductance as a function of E,, implies no voltage drop along the chain while, 
for a minimum, regular oscillations in the electrochemical potential appear along the 
chain. 
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\ 

N 

N aJ 0.00 

0.50 

0.00 
-3.0 -1.0 -1.0 0.0 1.0 2.0 
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Fermi Energy (E,) 

Figure 6. Linear conductance, in Units of Ze'fh, 
as a Iinclion of the Fermi level, referred to (he 

, middle of the mnduction band, for. (a) n = 36; 
(b) R = 38. 

It is worth commenting that by starting with one of the cases where the conduc- 
tance has a minimum as a function of Et (say, n = 38, E, = 0, and t ' / t  = 1) one 
can increase G by changing t ' / t  appropriately. Then a maximum in the conductance 
appears taking for t ' / t  the values ( z  - l) ' / '  or l / ( z  - (as found above in 
figure 5 for z = 4), depending on the length of the chain and the order of the 
oscillations associated with the conductance maximum (for the sake of brevity we do 
not discuss these results in more detail). 

We have also analysed the potential variations along the chain for values of t ' / t  
close to the one in which the conductance has a maximum. We have chosen the case 
n = 38, E, = -0.5 and t ' / t  close to 1.71. Figure 7shows our results for t ' / t  equal 
to 1.2 ,  1.65 and 1.8. This figure shows that the potential has a small drop across 
the chain defect, for t ' / t  larger or smaller than 1.65. Notice that this drop changes 
its sign when t ' / t  crosses the value 1.65. 
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Qum 7. Elccvochemical polential variations along lhe chain for n = 38. ~ ( P R  t 
pL) = -0.5 and different values o[ ;'It: (U) ;'It = 1.2; (b) ;'It = 1.65; (c) 
t ' l t  = 1.8. 

We have also analysed the non-linear conductance of a linear chain in order to see 
how saturation effects in the current appear for high applied biases. Figure 8 shows 
G =  I/(pR-pL),for n=38, f (pR+pL)=-0 .5 , and  p,-pL=0.01,0.1,0.5 
and 2, as a function of f / t .  The case pR - pL = 0.01 represents a linear transport 
regime with G,,, = 2e2/h ,  while for larger bias the maximum conductance is lower 
than 2 e z / h .  Moreover, for the non-linear cases the maximum of the conductance 
tends to appear around t ' / t  = 1, at variance with the linear regime. Let us remark, 
finally, that the maximum conductance decreases with increasing values of pR - pL 
(increasing non-linearity). 
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Figure 9. Qualitative tehaviour of E-+. E t -  and 
g$,; as funclions 01 W.  The inset shows E-+ and 
C*- for the equilibrium case, p~ = = p. 
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4. Inelastic wnductance 

We have analysed how inelastic effects modify the chain conductance in the limit of 
very small bias, the case of the linear regime. At the same time we are going to 
assume that the electron inelastic mean free path, A,  is much larger that the chain 
length, L. A more general case will be discussed qualitatively in the next section. 

In the limit X > L we expect that the inelastic effects do not change appreciably 
the elastic solution calculated in the previous section. Now, we shall proceed to 
calculate the lowest order effects introduced by the inelastic scattering. 

In this paper we shall discuss specifically the electron-electron interaction (equa- 
tion (3a)) effects on the conductance. As mentioned above we shall use a local 
approximation m calculate 9; a second order perturbative calculation in U yields the 
lowest inelastic contribution to gi , i :  

x S ( W  + E2 - E3 - E4) (17) 

with a similar equation for E t .  Here G:(') is the elastic Green function (9 = 0). 
In the inset of figure 9 we show the qualitative behaviour of gt- and et- as given 
by equation (17) for a zero applied bias ( p  = pR = pL). In this case, Ct- = 0 for 
w < p, while 5-t = 0 for w > p (gt- and e-. are purely imaginaly quantities); 
both self-energies tend to zero, for w going to p, like (w - P ) ~ .  We should mention 
that in general: 

21m[CR(w)l = C+-(w) - ~ : - + ( w )  (18) 

in such a way that the inset of figure 9 yields around p = pR = pL, the well known 
behaviour for ImCR when one considers the Hamiltonian 3(a). 

For pR # pL we can expect that the induced currents around the Fermi energy 
broaden E+- and E-+, as shown in figure 9 (the results of this figure have been 
obtained by assuming that the electron states between pR and pL are half-occupied). 
As shown in figure 9 E+- and E-+ are mirror images of each other with respect to 
; (p ,  + pL), for small values of w - ;(pR + pL) .  'This symetly is a consequence of 
the symmetrical electronic excitations appearing around ;(pR+ pL) arising from the 
currents induced along the chain. Let us mention at this point that, in a perfect one- 
dimensional chain without defects, the forward and backward induced elastic currents 
should be the same at all the atoms of the chain. On the other hand, if the chain is 
long enough, with n > 1, the local density of states at each atom is the Same except 
for the few atoms around the contacts. Then, we can expect .E+ to be the same for 
almost all the chain sites. For n >> 1 we shall fake from now on: 

E;,;(w) = C(w)  (19) 

and obtain all the inelastic effects using this equation with 2 calculated for the a tom 
located well inside the chain. Let us stress that this is only a valid approximation in 
the limit n > 1, a case for which the contact effects between the linear chain and 
the reservoirs can be neglected. 
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The inelastic current given by equation (15) now takes the form: 

to fust order in the inelasticscattering. In figure 9we also show g & t ( w )  and g&(w); 
according with the definition given above, we can write: 

where po(w) k the local density of states in the @site for the uncoupled Bethe lattice 
and fL(w) the Fermi distribution function for p = pL. Thus, g&(w) (gc$ (w) )  b 
different &om zero only for w larger (smaller) than pL. 

Figure 9 and equations (21) show that the factor 
m 

dw P ' - I w ) g ~ ~ ( w )  - C - ' ( ~ ) g ~ O ( w ) l  J _ ,  
inside equation (20) can be replaced, for a small bias, by 

~ P O ( P O ) ( P R  - d I m [ ( ( X t -  - E-+))] 
where po = +(pR + wL) and ( ) meam an average in the region pL < w < pw 
Using equation (IS), we can write the inelastic current as follows: 

Let us also mention that the elastic current, I,,, should be calculated with equation 
(14), using the full Green function, Gt,(w) ,  instead of the elastic one, GI:kR(w). 
This implies that the inelastic scattering contributes to the elastic component of the 
current through the modilication of the retarded Green function, GR. Notice that 
G R  satisfies the following equation: 

G R  = p + G R (  F + C R ) p  (23) 

as can be found by combining equations (7) and (9). 

equation (4). This yields 
GR will be calculated in fust order with respect to eR, and then introduced in 

where (Gt , (po))  is the Green function GY,n(w), as calculated from equation (B), 
replacing w by the mean Fermi energy, po, and CR by its mean value (ER) in 
the interval p L  < w < pw ( G F n ( p o ) )  depends, accordingly, on the real and the 
imaginaly components of (ER). The effect of Re(CR) on the inelastic transport 
is to introduce a phaseshift in the different physical magnitudes of the problem, 
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while Im(ZR) yields a damping effect typical of all inelastic processes. For instance, 
&(ER) can change the phaseshift of the electrochemical potential variation along 
the chain, and modify the interference between the Fermi wavelength and the chain 
length. We shail concentrate, however, on discussing how Im(XR) affects the current 
and damps some of the oscillations appearing in the conductance as a function of the 
Fermi level (figure 6); this implies that our results are going to depend only on the 
quantity Im(ER), which is going to mesure how inelastic effects modify the current 
with respect to the elastic regime. 

Equations (24) and (22) yield the elastic and inelastic components of the total 
current as functions of the Green functions and GR, given by equations (9) 
and (U), respectively. 

Without going into more details we write down the elastic and inelastic compo- 
nents of the total current as calculated from those equations. The elastic component 
is given by 

G,, = lel/(pR - pL)  = (2ez/h)4czsin2 asin’  a’/(4c2sin2 a sin’ a’+ A’+ A) 
(Za) 

where A, a, a’ and c have been defined above, and 

A = -n(Im(CR)/t,sin a ) [2c ( l  + c2)sin a s i n  a’+ c2sin 2as in  Za’]. (2%) 

Notice that A yields how inelastic processes affect the elastic current. As men- 
tioned above this is owing to the ‘optical potential’ created by the electron self-energy. 

-2DO aoo 2DO 
Ef 

FIgum 10. Linear mnduclance, G / ( Z e z / h ) ,  as 
a function of the Fermi level for n = 16 and 
(U) Im(ER) = 0; (b) Im(ZR) = 0.004: and (c) 
Im(CR) = 0.008t. In cam (6) and (c) we show 
the elastic and inelastic conductances; the inelastic 
mntribution k ing  the smallest one. 

0.00 ’ 1 
-200 WO 2.00 

E t  
Flgum 11. linear mnductance, G / ( 2 e 2 / h ) ,  as 
a funcrion of Lhe Fermi level for n = 16. This 
figure includes the elastic and the inelaslic mnui- 
butions for Im(CR) = 0.008t. The broken curve 
curresponds to Im(ER) = o . 
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Equation (Ua) yields for A = 0 the solution given in equation (1Q). Figure 
10 shows this elastic solution for n = 16 as a function of the Fermi energy; the 
elastic conductance for A = 0 behaves like those presented in figure 6 for n = 36 
and 38. In order to discuss how the inelastic processes affect the conductance, it is 
convenient to calculate the maximum and minimum envelopes of the elastic current 
(with A = 0). Room equations (16) we obtain 

V ( A  = 0) = 2e2/h (264 

and 

GT"(A = 0) = (2e2/h)4czsin2 a s i n '  a'{4c2sinZ asin '  a' 

+[( I  +c2)cos a+2ccos  a ]2+(~-c ' )2 s in ' a ] -1 .  (266) 

Equation (26~) is obtained by taking A = 0 in equation (IQ), while equation (266) 
is obtained by calculating the maximum of A in the same equation (I&). 

The elastic contribution to the total current, for the inelastic regime, can also be 
analysed in the same way. From equations (Z), we get that the maximum and the 
minimum envelopes of Ge,(A # 0) are given by 

--(A f 0) = (2e2/h)4c2sinz a s i n '  a '/(4c2sin2 asin '  a'+ A) (274 
GZ'"(A # 0) = (2ez/h)4c2sin2 a s in '  a'{4cZsin2 asin '  a' 

+ [(l + c')cos a + 2ccos a]?+ ( 1  - c')'sin' a +  A}-'. (276) 

We should mention at this point that A is always positive, because Im(XR} is 
negative. Then G3=(A # 0)  is always smaller than 2e2/h, and GZLn(A + 0) is 
also smaller than GZ'"(A = 0). Figure 10 shows how GZax and GZin depend on A, 
for n = 16. 115 this figure shows, an increase in A reduces the elastic contribution to 
the current and its oscillations as a function of the Fermi energy. Notice that these 
envelope functions depend only on Im(CR} but not on Re(CR); this real part of (e} 
would only modify the relative position of the conductance oscillations. 

As regards the inelastic contribution to the total current we find the following 
equation: 

' (28) 
I" - 2eZnIm(CR)s in  a s i n  a'(1 + C ' + ~ C C O S  acos a') 

h tosin a 4c* sin2 asin '  a' + A' G,",, = 
PR - PL 

The maximum and the minimum envelopes of Ginei are given by 

2 e Z n 1 m ( ~ R ) ( ~ + c ' + ~ c c o s a c o s  a') qy = -- h tosin a 4c'sin a s i n  a' 

+ [( 1 + c') cos a + 2ccos a']' t (1 - c2) sin' a}-*. (2%) 

Contrary to what happens with the elastic current the inelastic contribution and its 
oscillations increase with Im(CR). The behaviour of both the elastic and the inelastic 
components to the current are shown in figure 10, for n = 16. 
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In order to see how the envelop of the maximum of the total current changes 
with Im(ER) it is mnvenient to combine equations (27a) and (27b) From these 
equations we find that the effect of Im(ER) is to lower the envelop of the conductance 
maximum; defining 6G"" as follows: 

we find, up to first order in Im(CR): 

(31) 
nIm(ER) ( 1 + c Z + 2 c c o s a c o s a ' )  

4cZsin a s i n  a' 
6Gmax= (y)  ( $,sin a ) 

a result consistent with equation (29a) since 

2e2/h - G T  = 2GZ:r = -26GmaX. 

Equation (32) shows that up to first order in the parameter Im(CR), the envelope 
of the maximum current is lowered as much as the value of the envelope of the 
maximum inelastic current increases. This is also seen in the results presented in 
figure 10. We conclude that the inelastic scattering reduces the total current with 
respect to the elastic case (Im(ER) = 0 ) .  This reduction is shown in figure 11, for 
n = 16. 

The lower envelope of the total current can be studied by combining equations 
(27b) and (29b). Figure 11 shows how the minima evolve with Im(ER). The envelopes 
are shown in figure 11 as a function of the Fermi level that is assumed to move across 
the onedimensional chain band width. The main point to notice about this figure 
is how the total conductance and its mcillations are reduced for increasing values of 
Im(cR). 

It is worthwhile mentioning that although for reasons of exposition we have pre- 
sented in figures 10 and 11 the transport properties of the Linear chain as a function 
of Im(ER), what really matters for the definition of the lower and upper envelopes 
and, as a consequence, for the mcillation amplitudes, is the product n Im(ER). This 
is evident from the inspection of equations (25b) and (29). 

The inelastic processes reduce the total current as they reduce the drift velocity of 
the carriers. Simultaneously they introduce a mechanism through which the electron 
loses the memory of its phase at a distance of the order of the mean free path 
(Altshuler et d 192.2). Although we are in a region where the sample length is much 
shorter than the mean free path, this lose of memory reflects itsef in the fact that the 
current oscillations, as a function of the Fermi level, are reduced in amplitude owing 
to a reduction of quantum interference as the inelastic scattering parameter Im(CR) 
increases. 

5. Discussion and concluding remarks 

In this paper we have analysed the transport properties of a one-dimensional chain 
joining two reservoirs. The chain conductance, the electrochemical potential vari- 
ations along the chain and other related properties have been discussed, keeping 
in mind the understanding of how the chain properties are related to the quantum 
mechanical interference effects appearing between the electron and the chain length. 
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First of all, we have discussed the elastic regime: in thii case, electrons move elas- 
tically from one reservoir to the other, or are assumed to be scattered by a localized 
defect Our analysis shows that there is a deep link between the chain conductance 
and the electrochemical potential variations along the chain. The conductance of an 
ideal chain as a function of its mean Fermi energy has oscillations with different m a -  
imum values of 2 e 2 / h .  For these maxima, the electrochemical potential is constant 
along the cham. For the minimum in the mnductance as a function of the Fermi 
energy, the electrochemical potential shows, however, oscillations that are related to 
the electron Rrmi wavelength the conductance minimum is the result of a construc- 
tive interference for the electrochemical potential between that Fermi wavelength and 
the chain length. It is also of interest to notice that for these cases (conductance 
minimum), a chain defect can destroy the above mentioned constructive interference 
and modify the chain conductance: we have also found that by appropriately choos- 
ing the scattering properties of the defect one can obtain a maximum in the chain 
conductance (the defect introduces the appropriate destructive interference between 
the Fenni electron wavelength and the chain length, in order to maximize the chain 
conductance). 

Nonlinear effects for the elastic regime have also been discussed. In general, we 
find that non-linear effects reduce the chain conductance, introducing large fluctua- 
tions in the electrochemical potential =nations along the chain. 

The inelastic regime has also been analysed in this paper. In this case we have only 
discussed how inelastic processes modify the oscillations appearing in the conductance 
of an ideal chain as a function of the mean Fermi energy. One can think, extrapolating 
the results obtained for the elastic case, that these modifications are reflecting how 
the interference effects between the electron wavelengths and the chain length are 
destroyed. Our results have shown how the inelastic processes reduce the conductance 
and its oscillations as a function of the Fkrmi energy of the ideal chain. This is the 
expected result, since inelastic processes should eliminate the electron memory of its 
phase at a distance of the order of its inelastic mean free path. 

We should mmment that our analysis of the inelastic regime has been performed 
by including the electron-electron interaction explicity. Based on a selfenergy local 
approximation we have shown that the inelastic processes can be described by means 
of an effective parameter, I m ( S ) ,  that plays the role of an electron mean lifetime. 
Although the discussion has been concentrated on the electron4ectron interaction 
case, as given by equation (30),  it should be commented on that similar arguments can 
be used to discuss the electron-phonon interaction case, equation (36), and that one 
can obtain the same results as for the electron-electron interaction. The equations 
obtained for the inelastic regime can also be applied to the electron-phonon scattering 
case. 

Although the inelastic analysis of section 3 has been presented for an inelastic 
mean free path, A, much larger than the chain length, (this implies n Im(ER) Q to) ,  
it is worth discussing the qualitative behaviour one expects for the conductance of a 
linear chain in the limit of shorter mean free paths. Let us mention here that the 
opposite limit, X Q: L (or equivalently n Im(ER) > to) can also be analysed using 
the Keldysh method and by considering the inelastic current, which turns out to be 
the only term contributing to the wtal current (the elastic Current goes to zero in 
this limit, X < L). Then one can show (details will bc published elsewhere) that the 
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total current for X < L is given by the following equation: 

. (33) [ 1 + C ~ + 2 c c o s ( a - a ' ) ]  
4csin a s i n  a' 

G =  Z/ (pR - pL) = (2e2/h)(t,sin a /nIm(XR))  

This equation shows that for X L, the total oonductance is inversely propor- 
tional to n Im(CR); this result yields Ohm's law for a one-dimensional system. The 
Ohm's law resistance is proportional to the inverse of the relaxation time lm(cR) 
owing to inelastic collisions, and to the inverse of the length of the linear chain. 

Figure 12 The qualitltive khaviour of he linear- 
chain mnductance, G / ( 2 e z / h ) ,  as a function of 
n Im(ZR)/to. Fquation (33) is shown by the bro- 
ken "e. 

A qualitative behaviour of the conductance of an ideal chain as a function of 
nIm(CR)/lo is shown in figure 12, for the Fermi level located around the middle 
of the band width. The limit nIm(CR)/t ,  < 1 corresponds to a very long mean 
free path; in figure 12 we represent the minimum and the maximum conductance, the 
shaded region corresponding to intermediate values depending on the exact position 
of the Fermi level. In the other limit, n Im(ER) > 1, we recover Ohm's law. Al- 
though figure 12 shows a qualitative description of the ideal linear-chain conductance, 
notice that the long mean free path limit should disappear for nIm(ER)/lo = 1. 
Then we can expect that, for larger values of nIm(CR)/t,, the conductance os- 
cillations and any other oscillatory properties such as the electrochemical potential 
variations discussed in this paper should disappear. 
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